
media-nommer Documentation
Release 1.0dev

DUO Interactive, LLC

February 10, 2015

Contents

1 This may be useful if... 3

2 Learning more 5

3 Documentation 7
3.1 An Introduction to media-nommer . 7
3.2 Installation . 8
3.3 feederd . 10
3.4 ec2nommerd . 11
3.5 Using feederd’s JSON API . 12

4 Development docs 15
4.1 Hacking on media-nommer . 15
4.2 media-nommer module reference . 17
4.3 Indices and tables . 30

Python Module Index 31

i

ii

media-nommer Documentation, Release 1.0dev

media-nommer is a distributed media encoding system that gets its horsepower from Amazon AWS. This leaves you
with a cheaper, more reliable alternative to some commercial paid encoding systems, since you are only paying for
your Amazon AWS usage. The software is powered by a combination of Python, Twisted, and Boto, and is licensed
under the flexible BSD License.

Contents 1

http://aws.amazon.com/
http://aws.amazon.com/
http://python.org
http://twistedmatrix.com/trac/
http://boto.cloudhackers.com/
http://opensource.org/licenses/bsd-license.php

media-nommer Documentation, Release 1.0dev

2 Contents

CHAPTER 1

This may be useful if...

media-nommer is of interest to you if you need a way to encode media in a cheap, fast, and scalable manner. By using
Amazon AWS‘s excellent EC2 service, you can automatically scale your number of encoder instances up to meet your
demands. Of course, the entire process may be configured, limited, and adapted to meet your needs. Some example
usage cases where media-nommer might be a good fit:

• Encoding user-uploaded media for serving from your site

• Bulk encoding large collections of videos

3

http://aws.amazon.com/
http://aws.amazon.com/ec2/

media-nommer Documentation, Release 1.0dev

4 Chapter 1. This may be useful if...

CHAPTER 2

Learning more

To learn more about media-nommer, see the An Introduction to media-nommer.

Project Status: Beta

License: media-nommer is licensed under the BSD License.

These links may also be useful to you.

• Source repository: https://github.com/duointeractive/media-nommer

• Issue tracker: https://github.com/duointeractive/media-nommer/issues

• Mailing list: https://groups.google.com/forum/?hl=en#!forum/media-nommer

• IRC Room: #medianommer on FreeNode

5

http://opensource.org/licenses/bsd-license.php
https://github.com/duointeractive/media-nommer
https://github.com/duointeractive/media-nommer/issues
https://groups.google.com/forum/?hl=en#!forum/media-nommer

media-nommer Documentation, Release 1.0dev

6 Chapter 2. Learning more

CHAPTER 3

Documentation

3.1 An Introduction to media-nommer

media-nommer is a Python-based, distributed media encoding system. It aims to implement much of the same services
offered by commercial encoding services. The primary advantage afforded by media-nommer is that one only pays
for what they use on Amazon AWS, with no additional price mark-up. It may also be completely customized to meet
your needs.

3.1.1 Some Background

There are any number of encoding services around the web, some of which are cheap and very easy to use. We
(DUO Interactive) were searching for a suitable fit for two different projects that an extreme amount of encoding
scalability. However, the more we looked into it, the more we struggled with picking a service that had a good balance
of affordability and permanence. We also were looking for a little more customizability in the encoding process.

Many encoding services use software such as FFmpeg, and encode media to codecs that they have not paid licensing
fees for. If the service has any degree of success, it is only a matter of time before MPEG-LA and others come
knocking to get their licensing fees. This often spells end-of-game for the smaller (often cheaper) services. On the
other end of the spectrum, some 100% legal services have to raise their prices up to cover the large licensing fees,
putting it outside the realm of what we’d like to pay. A good read on this subject can be found on the FFmpeg legal
page.

For those of us who don’t need to encode to royalty-encumbered formats, a cheaper, more customizable, and more
permanent solution was to just write our own. The result of all of this was the creation of media-nommer, a Python-
based media encoding system with scalability and flexibility in mind.

3.1.2 A high level overview

media-nommer is comprised of two primary componenets, feederd and ec2nommerd.

feederd

Distributed encoding requires a director or orchestrator to keep everything running as it should. This is where the
feederd daemon comes into play. Here are some of the things it does:

• Manages your EC2 instances (which have the ec2nommerd daemon running on them), and intelligently spins up
more instances according to your configuration and work load.

• Keeps track of the status of your encoding jobs, present and past.

7

http://python.org
http://aws.amazon.com/
http://duointeractive.com
http://www.ffmpeg.org/
http://ffmpeg.org/legal.html
http://python.org
http://aws.amazon.com/ec2/

media-nommer Documentation, Release 1.0dev

• Exposes a simple JSON-based API that can be used to schedule jobs, and check on the status of those that are
currently running or completed.

feederd may be ran on your current infrastructure, or on EC2. Your EC2 encoding nodes are never in direct contact
with feederd, and instead communicate through Amazon AWS. This means no firewall holes need to be opened.

ec2nommerd

Where feederd is the manager, ec2nommerd is the worker. Your basic unit of work is an EC2 instance that runs
ec2nommerd. This daemon simple checks a SQS queue for jobs that need to be encoded, and does so until the queue
is empty. After a period of inactivity, your EC2 instances will terminate themselves, saving you money.

3.2 Installation

Due to the early state of this project, there is a good chance that parts of these instructions are out of date at any given
time. If you run into any such issue please let us know on our issue tracker.

Note: The following instructions are directed at what your eventual production environment will need. See Hacking
on media-nommer for details on setting up a development environment.

3.2.1 Assumptions

For the sake of sanity, good deployment practices, and uniformity, we’re going to make some assumptions. It is
perfectly fine if you’d like to deviate, but it will be much more difficult for us to help you:

• You are deploying or developing media-nommer in a virtualenv. We highly recommend that and virtualen-
vwrapper.

• You are running a flavor of Linux, BSD, Mac OS, or something POSIX compatible. While Windows support is
achievable, it’s not something we currently have the resources to maintain (any takers?).

• You have Python 2.y or later. Python 2.7 is preferred. Python 3.x is not currently supported.

• You have an Amazon AWS account, and can create S3 buckets.

3.2.2 Requirements

• Some flavor of Linux, Unix, BSD, Mac OS, or POSIX compliant OS.

• Python 2.6 or higher, with Python 2.7 recommended. Python 3.x is not supported (yet).

3.2.3 Installing

For the sake of clarity, the media-nommer Python package contains the sources for feederd and ec2nommerd. You will
want to install this package on whatever machine you’d like to run feederd on. You do not need to do any setup work
for ec2nommerd, as those are ran on an EC2 instance that is based off of an AMI that we have created for you.

Since we are not yet distributing media-nommer on PyPi, the easiest way is to install the package is through pip:

pip install txrestapi twisted
pip install --upgrade git+http://github.com/duointeractive/media-nommer.git#egg=media_nommer

8 Chapter 3. Documentation

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/sqs/
http://aws.amazon.com/ec2/
https://github.com/duointeractive/media-nommer/issues
http://pypi.python.org/pypi/virtualenv
http://www.doughellmann.com/projects/virtualenvwrapper/
http://www.doughellmann.com/projects/virtualenvwrapper/
http://python.org
http://python.org
http://python.org
http://aws.amazon.com/
http://aws.amazon.com/s3/
http://python.org
http://python.org
http://aws.amazon.com/ec2/

media-nommer Documentation, Release 1.0dev

Note: If you don’t have access to pip, you may download a tarball/zip, from our GitHub project and install via the
enclosed setup.py. See the requirements.txt within the project for dependencies.

We have to install Twisted before media-nommer because of an odd behavior with pip.

Tip: Any time that you upgrade or re-install Twisted, you must also re-install media-nommer.

3.2.4 Signing up for AWS

After you have installed the media-nommer Python package on your machine(s), you’ll need to visit Amazon AWS
and sign up for the following services:

• SimpleDB

• SQS

• EC2

It is important to understand that even if you already have an Amazon account, you need to sign up to each of these
services specifically for your account to have access to said services. This is a very quick process, and typically
involves looking over an agreement and accepting it.

Tip: Signing up for these services is outside the scope of this document. Please contact AWS support with questions
regarding this step. Their community forums are also a great resource.

Fees are based on what you actually use, so signing up for these services will incur no costs unless you use them.

3.2.5 AWS Management Console stuff

After you’ve signed up for all of the necessary services, there are a few steps to work through within the AWS
Management Console. Sign in and take care of the following.

Create a Security Group

You will need to create a media_nommer EC2 Security Group through the AWS management console for your EC2
instances to be part of. You don’t need to add any rules, though, unless you want SSH access to the encoding nodes.

Warning: Failure to create an EC2 security group will result in media-nommer not being able to spawn EC2
instances, which means no encoding for you.

Create or import an SSH key pair

Click on the EC2 tab and find the Key Pairs link on the navigation bar. You can then either create or import a key pair.
Make sure to keep track of the name of your keypair, as you’ll need to specify it in your media-nommer configuration
later on.

Warning: Failure to create or import an SSH key pair will also lead to media-nommer being unable to spawn
EC2 instances.

3.2. Installation 9

https://github.com/duointeractive/media-nommer
http://aws.amazon.com/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/sqs/
http://aws.amazon.com/ec2/
http://aws.amazon.com/
https://console.aws.amazon.com/
https://console.aws.amazon.com/
http://aws.amazon.com/
http://aws.amazon.com/ec2/

media-nommer Documentation, Release 1.0dev

3.2.6 Configuring

Once media-nommer is installed, create a directory to store a few files in. Within said directory, create a file called
nomconf.py. You will want to add these settings values (at minimum):

The AWS SSH key pair to use for creating instances. This is just the
name of it, as per your Account Security Credentials panel on AWS.
EC2_KEY_NAME = ’xxxxxxxxx’
The AWS credentials used to access SimpleDB, SQS, and EC2.
AWS_ACCESS_KEY_ID = ’YYYYYYYYYYYYYYYYYYYY’
AWS_SECRET_ACCESS_KEY = ’ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ’
The S3 bucket to store a copy of ‘‘nomconf.py‘‘ for nommer instances.
NOTE: CREATE A BUCKET AND CHANGE THIS VALUE BEFORE YOU START!
CONFIG_S3_BUCKET = ’change-this-value’
The AWS security groups to create EC2 instances under. They don’t need
any rules set.
EC2_SECURITY_GROUPS = [’media_nommer’]

See media_nommer.conf.settings for a full list of settings (and their defaults) that you may override in your
nomconf.py.

3.2.7 Starting feederd

You will now want to start feederd using whatever init script or init daemon you use. We have had good results
with Supervisor, but you can use whatever you’re comfortable with. Make sure that the server running feederd is
reachable by the machines that will be sending API requests to start encoding jobs. Here is an example command
string, assuming you’re in your top-level media-nommer directory (not media_nommer):

PYTHONPATH=media_nommer twistd -n --pidfile=feederd.pid feederd

3.2.8 Using

From here, you’ll want to select and start using a Client API Libraries. These are what communicate with feederd‘s
RESTful web API, and ultimately help get stuff done.

3.3 feederd

Distributed encoding is a complex task, with lots of moving parts and components. To create, monitor, and “motivate”
our EC2 encoding instances during the process, we have feederd.

3.3.1 What is feederd

feederd is a Twisted plugin that runs as a daemon on the machine of your choice. This can be on your own bare
metal server, or on an EC2 instance. The daemon keeps track of encoding jobs through Amazon SimpleDB, tells
your EC2 encoder instances to get to work via Amazon SQS, and exposes a lightweight JSON web API for your own
custom applications to schedule and manage jobs through.

3.3.2 Relationship with ec2nommerd

If feederd is the brains of the operation, ec2nommerd is the brawn. feederd simply saves job state data to
SimpleDB and creates SQS queue entries to let your EC2 instances know that there’s work to be done. Each of your

10 Chapter 3. Documentation

http://supervisord.org/
http://aws.amazon.com/ec2/
http://twistedmatrix.com/trac/
http://aws.amazon.com/ec2/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/ec2/
http://aws.amazon.com/sqs/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/sqs/
http://aws.amazon.com/ec2/

media-nommer Documentation, Release 1.0dev

EC2 instances run an ec2nommerd daemon, which pulls jobs from the queue (or terminates the instance if there isn’t
any work to be done).

3.3.3 Intelligent scaling

Along with providing an entry point to start, manage, and track the encoding process, feederd also handles scaling
your encoding cloud up as needed. Based on your configuration, feederd will look at the current list of jobs that
need to be encoded in comparison to the number of encoding instances you currently have running on EC2. It will
then decide whether it should spawn additional instances to handle the load.

EC2 instances are spawned from a public AMI that we maintain as part of the project. If you wish to create your own
custom AMI, you may easily specify your own or clone and modify ours.

Automated scaling is an optional feature, and can be configured and restricted in a number of different ways. For
example, perhaps you don’t want any more than one or two EC2 instances running at any given time.

3.3.4 JSON API

To actually get jobs scheduled and work done, you will need to communicate with feederd through its JSON API.

3.3.5 Architectural notes

One of the requirements for media-nommer was that at no time would feederd and one of its ec2nommerd instances
communicate directly. As noted earlier, job state information is saved and retrieved from SimpleDB by both feederd
and ec2nommerd instances. SQS is used to delegate work to the ec2nommerd instances. This does a few things for us:

• We don’t have to open a hole in our firewall in your data center or in your EC2 encoder nodes.

• If feederd or the server that hosts it goes down, your ec2nommerd instances will continue encoding until the
last job is popped off the queue. After that, they may be configured to terminate themselves after a period of
inactivity (to save you money).

There is a lot of code that feederd and ec2nommerd shares, which can all be found in the media_nommer.core
module. This is best thought of as a lower level API that these two components use to save and retrieve job state
information.

Source for feederd can be found in the media_nommer.feederd module.

3.4 ec2nommerd

If feederd is the manager, ec2nommerd is the worker. You can also think of the relationship in that feederd feeds
your nommers.

3.4.1 What is ec2nommerd

ec2nommerd is a Twisted plugin that runs as a daemon on EC2 instances in the cloud. These instances are automati-
cally created by feederd. If an ec2nommerd finds itself with available encoding capacity, it will hit an Amazon SQS
queue to see if there is any work available. If it finds anything, it pulls the job details from SimpleDB and hands the
job off to the appropriate nommer for encoding.

If, after a period of time, the daemon receives no work to be done, it can be configured to terminate itself to save
money.

3.4. ec2nommerd 11

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/sqs/
http://twistedmatrix.com/trac/
http://aws.amazon.com/ec2/
http://aws.amazon.com/sqs/
http://aws.amazon.com/simpledb/

media-nommer Documentation, Release 1.0dev

3.4.2 Nommers

Nommers are classes that contain all of the logic specific to different kinds of encoding workflows. For example, the
FFmpegNommer nommer wraps the FFmpeg command for encoding. Each nommer sub-classes the BaseNommer
class, which provides some foundational methods. View the source for these two classes for examples on how they
work. You may sub-class or create your own nommer.

The following Nommer classes are currently included with media-nommer. See each for details on how the
job_options key should look like in your API calls.

• media_nommer.ec2nommerd.nommers.ffmpeg.FFmpegNommer

3.5 Using feederd’s JSON API

One of feederd‘s roles is hosting a web-based JSON API for your custom applications to communicate through. With
this API, you may do such things as:

• Schedule encoding jobs

• Check the state of existing encoding jobs (To be implemented)

By using a simple web-based API, you are free to either use one of the existing client API libraries, or write your own.

3.5.1 Client API Libraries

The following API client libraries are for forming and sending JSON queries to media-nommer’s web API. This is
important for sending and checking on encoding jobs. Your applications will use the API to make media-nommer do
something (other than stare at you blankly).

If you create a library of your own, let us know via the issue tracker and we’ll add yours to the list.

• media-nommer-api (Python)

3.5.2 API Call Reference

All API calls are sent via POST with the body being JSON. Responses are also JSON-formatted.

Note: You should send these calls to the host/port that your feederd is running on. This defaults to 8001, but may
specify when you call the twistd command to start the daemon.

/job/submit/

This call submits a job for encoding. Here is an example call with POST body:

{
"source_path": "s3://AWS_ID:AWS_SECRET_KEY@BUCKET/KEYNAME.mp4",
"dest_path": "s3://AWS_ID:AWS_SECRET_KEY@OTHER_BUCKET/KEYNAME.mp4",
"notify_url": "http://myapp.somewhere.com/encoding/job_done/",
"job_options": {

"nommer": "media_nommer.ec2nommerd.nommers.ffmpeg.FFmpegNommer",
"options": [

{
’outfile_options’: [

(’vcodec’, ’libx264’),

12 Chapter 3. Documentation

http://www.ffmpeg.org/
http://media-nommer-api-python.readthedocs.org/en/latest/
http://python.org

media-nommer Documentation, Release 1.0dev

(’preset’, ’medium’),
(’vprofile’, ’baseline’),
(’b’, ’400k’),
(’vf’, "yadif,scale=’640:trunc(ow/a/2)*2’"),
(’pass’, ’1’),
(’f’, ’mp4’),
(’an’, None),

],
},
{

’outfile_options’: [
(’vcodec’, ’libx264’),
(’preset’, ’medium’),
(’vprofile’, ’baseline’),
(’b’, ’400k’),
(’vf’, "yadif,scale=’640:trunc(ow/a/2)*2’"),
(’pass’, ’2’),
(’acodec’, ’libfaac’),
(’ab’, ’128k’),
(’ar’, ’48000’),
(’async’, ’480’),
(’ac’, ’2’),
(’f’, ’mp4’),

],
’move_atom_to_front’: True,

},
],

},
}

To further elaborate:

• source_path is a URI to the media file you’d like to encode. In this example, we use an S3 URI.

• dest_path is the full URI to where the output will end up.

• job_options is where you provide specifics as to what you’d like media-nommer to do. The nommer key
is used to select which nommer to use, and the options key within job_options is used to configure
said nommer (the values depend on the nommer). In the example above, we’ve selected the FFmpegNommer
nommer, which wraps the excellent FFmpeg. See the documentation for the various Nommers to see what
job_options is used for.

• notify_url is optional, and may be omitted entirely. If specified, this URL is hit with a GET request when
the encoding job completes.

The response to your request is also JSON-formatted, and looks like this:

{
"success": true,
"job_id": "1f40fc92da241694750979ee6cf582f2d5d7d28e1833"

}

If an error is encountered, success will be false, additional message and error_code keys will be set:

{
"false": true,
"error_code": "BADINPUT",
"message": "Bad input file. Unable to encode."

}

3.5. Using feederd’s JSON API 13

http://www.ffmpeg.org/

media-nommer Documentation, Release 1.0dev

14 Chapter 3. Documentation

CHAPTER 4

Development docs

The following topics will be useful to you if you would like to help improve media-nommer.

4.1 Hacking on media-nommer

For those that are particularly ambitious, or generous enough to want to contribute to the project, the barrier to entry
is reasonably low. We will go over a few topics at a high level to get you started.

4.1.1 Obtaining the source

The best way to obtain the source is through our git repository on GitHub. If you are going to do anything aside from
poke at the code, I would highly recommend visiting our GitHub project and forking the project via the Fork button.

For those not familiar with GitHub, this will create a copy of the repository under your username which you have
commit access to. From your repository, you can make modifications and send Pull Requests to the upstream project
asking for your changes to be merged in. Meanwhile, you can keep your fork up to date with changes from upstream.
This is a whole lot faster, easier, and more fun than the traditional patch juggling method.

If you’d like to skip the whole forking ordeal and just get a copy of our upstream repository on your machine, you’ll
probably want to do something like:

git clone https://github.com/duointeractive/media-nommer.git

This will leave you with a media-nommer directory in your current directory.

Tip: For those that aren’t familiar with git and/or GitHub, see the excellent GitHub help with lots of helpful how-tos.

4.1.2 Installing additional dependencies

There are a few additional dependencies to install when doing development work. Since everyone is being good little
programmers and working under virtualenv, it’s just a matter of switching to said virtual environment and doing this
from within your media-nommer dir:

pip install -r requirements.txt

Now you’re set to develop, run unit tests, and build our documentation.

15

http://git-scm.com/
https://github.com/
https://github.com/duointeractive/media-nommer
https://github.com/
http://git-scm.com/
https://github.com/
http://help.github.com/
http://pypi.python.org/pypi/virtualenv

media-nommer Documentation, Release 1.0dev

4.1.3 Configuration

You will now want to review the Configuring section of Installation document. You may create your nomconf.py
in your media-nommer directory for convenience. Return to this document once you have finished following the
configuration instructions.

4.1.4 Running and writing unit tests

Running unit tests is trivial with nose. cd to your media-nommer directory and just run:

nose

The cool thing about nose is that it will find anything that looks like a unit test throughout the entire codebase, without
us having to tell it where to look.

As far as writing unit tests, we’d like to shoot for full coverage, so please do write tests for your changes. If you are
working on something new, find the tests.py module neighboring the one you’re working on (or create one if it doesn’t
already exist) and write your unit tests using the standard Python unittest module. If you need any examples of how
our unit tests look, run this to find all of our tests.py modules from your root media-nommer directory:

find . -name tests.py

Look through these for a good idea of what we’re looking for.

Warning: We are very unlikely to accept code contributions without unit tests. It is understood that writing unit
tests is boring, tedious, and un-fun, but it is a necessary evil for complex software.

4.1.5 Running feederd locally

Note: This is suitable for local testing and development, your actual deployment would probably omit the -n flag to
allow daemonization, unless you’re using something like Supervisor.

If you are in your media-nommer directory, you may run feederd locally by doing this:

PYTHONPATH=media_nommer twistd -n --pidfile=feederd.pid feederd

4.1.6 Running ec2nommerd locally

ec2nommerd is designed to run on your EC2 instances, and is not at all meant to run on anything else. While it will
do so just fine in most cases, a few features (such as self-termination) obviously won’t work.

If you are in your media-nommer directory, you may run ec2nommerd locally by doing this:

PYTHONPATH=media_nommer twistd -n --pidfile=ec2nommerd.pid ec2nommerd -l

Warning: Make sure to include the -l flag or your daemon will just deadlock while trying to query a web server
that is internal to AWS.

4.1.7 Code style

We mostly adhere to PEP8, and expect contributors to do the same. A few quick hi-lights:

16 Chapter 4. Development docs

http://somethingaboutorange.com/mrl/projects/nose/
http://somethingaboutorange.com/mrl/projects/nose/
http://docs.python.org/library/unittest.html
http://supervisord.org/
http://aws.amazon.com/ec2/
http://aws.amazon.com/
http://www.python.org/dev/peps/pep-0008/

media-nommer Documentation, Release 1.0dev

• 80 columns width max when possible.

• Indents are 4 spaces, and not tabs. No tabs allowed.

• Avoid wildcard * imports unless absolutely necessary.

• No camelCase method names, use underscores and lowercase letters.

• Classes use CapWords.

• Global variables are ALL_UPPER_CASE.

• Comments and docstrings for just about everything. Even if you think it’s obvious. It probably won’t be a few
weeks/months/years later.

4.1.8 Contributing code

After you have made modifications in your GitHub fork, you need only send a Pull Request to us via the aptly named
Pull Request on your fork’s project page. See GitHub’s guide to forking. It’s quick and easy, we promise.

4.1.9 “I’m stumped, help!”

The best way to get help right now is to submit an issue on the issue tracker. This is useful for questions, suggestions,
and bugs.

4.1.10 Contributions are BSD-licensed

Important to note is the fact that all contributions to the media-nommer project are, like the project itself, BSD-licensed.
Please make sure you or your employer are OK with this before contributing.

4.2 media-nommer module reference

The following pages are reference material for media-nommer itself. This is probably only interesting to you if you
are adding new Nommers. If you simply want to get to encoding, you’ll want to select and start using one of the Client
API Libraries.

4.2.1 media_nommer.conf

This module contains settings-related things that are used by ec2nommerd and feederd. You will most likely be
interested in the settings module within this one, as that’s where all of the settings and their values reside.

When the ec2nommerd and feederd Twisted plugins start, they use the update_settings_from_module() to
override the defaults in the settings module with those specified by the user, typically via a user-provided module
named nomconf.py (though that name can change with command line arguments).

If you need access to settings, simply import the global settings like this:

from media_nommer.conf import settings

media_nommer.conf.update_settings_from_module(settings_module)
Given another module with settings in uppercase variables on the module, override the defaults in
media_nommer.conf.settings with the values from the given module.

4.2. media-nommer module reference 17

https://github.com/
http://help.github.com/forking/
https://github.com/duointeractive/media-nommer/issues
http://twistedmatrix.com/trac/

media-nommer Documentation, Release 1.0dev

Parameters settings_module (module) – A module with settings as upper-case attributes set. This
is typically nomconf.py, although the user can elect to name them something else.

settings

This module contains default global settings. When ec2nommerd and feederd daemons are started,
media_nommer.conf.update_settings_from_module() takes the settings that the user explicitly set
and overrides these defaults.

You may override any of these global defaults in your nomconf.py file. You will need to at the least provide the
following settings:

• AWS_ACCESS_KEY_ID

• AWS_SECRET_ACCESS_KEY

• EC2_KEY_NAME

media_nommer.conf.settings.AWS_ACCESS_KEY_ID = None
Default: None (User must provide)

These AWS credentials are used for job state management via SimpleDB, and queueing with SQS.

media_nommer.conf.settings.AWS_SECRET_ACCESS_KEY = None
Default: None (User must provide)

These AWS credentials are used for job state management via SimpleDB, and queueing with SQS.

media_nommer.conf.settings.CONFIG_S3_BUCKET = ‘nommer_config’
Default: ’nommer_config’

The S3 bucket to store a copy of nomconf.py for nommer instances.

media_nommer.conf.settings.EC2_AMI_ID = ‘ami-eb558182’
Default: The latest upstream AMI compatible with this git revision.

The AMI ID for the media-nommer EC2 instance.

media_nommer.conf.settings.EC2_INSTANCE_TYPE = ‘m1.large’
Default: ’m1.large’

The type of instance to run on. Must be at least m1.large. t1.micro and t1.small instances are NOT
supported by the default AMI.

media_nommer.conf.settings.EC2_KEY_NAME = None
Default: None (User must provide)

The AWS SSH key name with which to launch the EC2 instances.

media_nommer.conf.settings.EC2_SECURITY_GROUPS = [’media_nommer’]
Default: [’media_nommer’]

The AWS security groups to create EC2 instances under.

media_nommer.conf.settings.FEEDERD_ABANDON_INACTIVE_JOBS_THRESH = 32400
Default: 3600 * 24

If a job sticks in an un-finished state after this long (in seconds), it is considered abandoned, and feederd will
kill discard it.

media_nommer.conf.settings.FEEDERD_ALLOW_EC2_LAUNCHES = True
Default: True

When True, allow the launching of new EC2 encoder instances.

18 Chapter 4. Development docs

http://aws.amazon.com/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/sqs/
http://aws.amazon.com/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/sqs/
http://aws.amazon.com/s3/
http://aws.amazon.com/ec2/
http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

media-nommer Documentation, Release 1.0dev

media_nommer.conf.settings.FEEDERD_AUTO_SCALE_INTERVAL = 60
Default: 60

How often feederd should see if it needs to spawn additional EC2 instances.

media_nommer.conf.settings.FEEDERD_JOB_STATE_CHANGE_CHECK_INTERVAL = 60
Default: 60

How often feederd will check for job state changes.

media_nommer.conf.settings.FEEDERD_PRUNE_JOBS_INTERVAL = 300
Default: 60 * 5

How often feederd will check for abandoned or expired jobs.

media_nommer.conf.settings.JOB_OVERFLOW_THRESH = 2
Default: 2

If the number of unfinished jobs exceeds our capacity (MAX_ENCODING_JOBS_PER_EC2_INSTANCE *
<Number of Active EC2 instances>) by this number of jobs, look at starting new instances if we
have not already exceeded MAX_NUM_EC2_INSTANCES.

media_nommer.conf.settings.MAX_ENCODING_JOBS_PER_EC2_INSTANCE = 2
Default: 2

The maximum number of jobs that should ever run on a single EC2 instance at the same time.

media_nommer.conf.settings.MAX_NUM_EC2_INSTANCES = 3
Default: 3

The maximum number of EC2 instances to run at a time.

media_nommer.conf.settings.NOMMERD_HEARTBEAT_INTERVAL = 60
Default: 60

Used by EC2 nodes to determine how long to wait between sending a status update via SimpleDB. The node
will also check for inactivity greater than the configured value in NOMMERD_MAX_INACTIVITY, and terminate
itself if inactivity has exceeded that value, and NOMMERD_TERMINATE_WHEN_IDLE is True.

media_nommer.conf.settings.NOMMERD_MAX_INACTIVITY = 600
Default: 60 * 50

How many seconds of inactivity (not working on any jobs) before an instance will terminate itself.

media_nommer.conf.settings.NOMMERD_NEW_JOB_CHECK_INTERVAL = 60
Default: 60

An interval (in seconds) to wait between calls to AWS to check for new jobs.

media_nommer.conf.settings.NOMMERD_QTFASTSTART_BIN_PATH = ‘/home/nom/.virtualenvs/media_nommer/bin/qtfaststart’
The path to the qtfaststart bin used by ec2nommerd.

media_nommer.conf.settings.NOMMERD_TERMINATE_WHEN_IDLE = True
Default: True

When True, allow the termination of idle EC2 instances based on the NOMMERD_MAX_INACTIVITY setting.
It is important to keep in mind that you pay for an entire hour when you start an EC2 instance, so setting this
timeout to anything below 10 minutes is probably a waste of money. This timeout is in seconds.

media_nommer.conf.settings.SIMPLEDB_EC2_NOMMER_STATE_DOMAIN = ‘media_nommer_ec2nommer_state’
Default: ’media_nommer_ec2nommer_state’

The SimpleDB domain for storing heartbeat information from the EC2 encoder instances.

4.2. media-nommer module reference 19

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/ec2/

media-nommer Documentation, Release 1.0dev

media_nommer.conf.settings.SIMPLEDB_JOB_STATE_DOMAIN = ‘media_nommer’
Default: ’media_nommer’

The SimpleDB domain name for storing encoding job state in. For example, the date the job was created,
the current state of the job (PENDING, ENCODING, FINISHED, etc.), and the Nommer being used to do the
encoding.

media_nommer.conf.settings.SQS_JOB_STATE_CHANGE_QUEUE_NAME = ‘media_nommer_jstate’
Default: ’media_nommer_jstate’

The SQS queue used to notify feederd of changes in job state. For example, when a job goes from PENDING to
DOWNLOADING or ENCODING.

media_nommer.conf.settings.SQS_NEW_JOB_QUEUE_NAME = ‘media_nommer’
Default: ’media_nommer’

The SQS queue used to notify ec2nommerd of new jobs.

media_nommer.conf.settings.STORAGE_BACKENDS = {‘s3’: ‘media_nommer.core.storage_backends.s3.S3Backend’, ‘http’: ‘media_nommer.core.storage_backends.http.HTTPBackend’, ‘file’: ‘media_nommer.core.storage_backends.file.FileBackend’, ‘https’: ‘media_nommer.core.storage_backends.http.HTTPBackend’}
Default: (All included storage backends)

Storage backends. The protocol is the key, the value is the backend class used to work with said protocol.

utils

Various configuration-related utility methods.

media_nommer.conf.utils.download_settings(nomconf_uri)
Given the URI to a S3 location with a valid nomconf.py, download it to the current user’s home directory.

Tip: This is used on the media-nommer EC2 AMIs. This won’t run on local development machines.

Parameters nomconf_uri (str) – The URI to your setup’s nomconf.py file. Make Sure to specify
AWS keys and IDs if using the S3 protocol.

media_nommer.conf.utils.upload_settings(nomconf_module)
Given a user-defined nomconf module (already imported), push said file to the S3 conf bucket, as defined by
settings.CONFIG_S3_BUCKET. This is used by the nommers that require access to the config, like FFmpeg-
Nommer.

Parameters nomconf_module (module) – The user’s nomconf module. This may be called some-
thing other than nomconf, but the uploaded filename will always be nomconf.py, so the EC2
nodes can find it in your settings.CONFIG_S3_BUCKET.

4.2.2 media_nommer.core

The core module is home to code that is important to both the media_nommer.ec2nommerd and
media_nommer.feederd top-level modules. This is best thought of as a lower level API that all of the pieces
of the encoding system use to communicate and interact with one another.

Note: There should be nothing that is specific to just ec2nommerd or just feederd here if at all possible.

20 Chapter 4. Development docs

http://aws.amazon.com/simpledb/
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/
http://docs.python.org/library/functions.html#str

media-nommer Documentation, Release 1.0dev

storage_backends

Storage backends are used to handle download and uploading content to a number of different protocols in an ab-
stracted manner.

media-nommer uses URI strings to represent media locations, whether it be the file to download and encode, or
where the output should be uploaded to. A reference to the correct backend for a URI can be found using the
get_backend_for_uri() function.

media_nommer.core.storage_backends.get_backend_for_protocol(protocol)
Given a protocol string, return the storage backend that has been tasked with serving said protocol.

Parameters protocol (str) – A protocol string like ‘http’, ‘ftp’, or ‘s3’.

Returns A storage backend for the specified protocol.

media_nommer.core.storage_backends.get_backend_for_uri(uri)
Given a URI string , return a reference to the storage backend class capable of interacting with the protocol seen
in the URI.

Parameters uri (str) – The URI to find the appropriate storage backend for.

Return type StorageBackend

Returns A reference to the backend class to use with this URI.

s3

This module contains an S3Backend class for working with URIs that have an s3:// protocol specified.

class media_nommer.core.storage_backends.s3.S3Backend
Abstracts access to S3 via the common set of file storage backend methods.

classmethod download_file(uri, fobj)
Given a URI, download the file to the fobj file-like object.

Parameters

• uri (str) – The URI of a file to download.

• fobj (file) – A file-like object to download the file to.

Return type file

Returns A file handle to the downloaded file.

classmethod upload_file(uri, fobj)
Given a file-like object, upload it to the specified URI.

Parameters

• uri (str) – The URI to upload the file to.

• fobj (file) – The file-like object to populate the S3 key from.

Return type boto.s3.key.Key

Returns The newly set boto key.

4.2. media-nommer module reference 21

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#file
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#file

media-nommer Documentation, Release 1.0dev

job_state_backend

The job state backend provides a simple API for feederd and ec2nommerd to store and retrieve job state information.
This can be everything from the list of currently un-finished jobs, to the down-to-the-minute status of individual jobs.

There are two pieces to the job state backend:

• The EncodingJob class is used to interact with and manipulate individual jobs and their state.

• The JobStateBackend class is used to operate as the topmost manager. It can track all of the currently
running jobs, get new jobs from the SQS queue, and process state change notifications from SQS.

class media_nommer.core.job_state_backend.EncodingJob(source_path, dest_path, nommer,
job_options, unique_id=None,
job_state=’PENDING’,
job_state_details=None,
notify_url=None, cre-
ation_dtime=None,
last_modified_dtime=None)

Represents a single encoding job. This class handles the serialization and de-serialization involved when saving
and loading encoding jobs to and from SimpleDB.

Tip: You generally won’t be instantiating these objects yourself. To retrieve an existing job, you may use
JobStateBackend.get_job_object_from_id().

Parameters

• source_path (str) – The URI to the source media to encode.

• dest_path (str) – The URI to upload the encoded media to.

• job_options (dict) – The job options to pass to the Nommer in key/value format. See each
Nommer’s documentation for details on accepted options.

• unique_id (str) – The unique hash ID for this job. If save() is called and this value is
None, an ID will be generated for this job.

• job_state (str) – The state that the job is in.

• job_state_details (str) – Any details to go along with whatever job state this job is in. For
example, if job_state is ERROR, this keyword might contain an error message.

• notify_url (str) – The URL to hit when this job has finished.

• creation_dtime (datetime.datetime) – The time when this job was created.

• last_modified_dtime (datetime.datetime) – The time when this job was last modified.

is_finished()
Returns True if this job is in a finished state.

Return type bool

Returns True if the job is in a finished state, or False if not.

save()
Serializes and saves the job to SimpleDB. In the case of a newly instantiated job, also handles queueing
the job up into the new job queue.

Return type str

Returns The unique ID of the job.

22 Chapter 4. Development docs

http://aws.amazon.com/simpledb/
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://aws.amazon.com/simpledb/

media-nommer Documentation, Release 1.0dev

set_job_state(job_state, details=None)
Sets the job’s state and saves it to the backend. Sends a notification to feederd to re-load the job’s data
from SimpleDB via SQS.

Parameters

• job_state (str) – The state to set the job to.

• job_state_details (str) – Any details to go along with whatever job state this job is in. For
example, if job_state is ERROR, this keyword might contain an error message.

class media_nommer.core.job_state_backend.JobStateBackend
Abstracts storing and retrieving job state information to and from SimpleDB. Jobs are represented through the
EncodingJob class, which are instantiated and returned as needed.

FINISHED_STATES = [’FINISHED’, ‘ERROR’, ‘ABANDONED’]
Any jobs in the following states are considered “finished” in that we won’t do anything else with them.
This is a list of strings.

JOB_STATES = [’PENDING’, ‘DOWNLOADING’, ‘ENCODING’, ‘UPLOADING’, ‘FINISHED’, ‘ERROR’, ‘ABANDONED’]
All possible job states as a list of strings.

classmethod get_job_object_from_id(unique_id)
Given a job’s unique ID, return an EncodingJob instance.

TODO: Make this raise a more specific exception.

Parameters unique_id (str) – An EncodingJob‘s unique ID.

classmethod get_unfinished_jobs()
Queries SimpleDB for a list of pending jobs that have not yet been finished.

Return type list

Returns A list of unfinished EncodingJob objects.

classmethod pop_new_jobs_from_queue(num_to_pop)
Pops any new jobs from the job queue.

Warning: Once jobs are popped from a queue and delete() is ran on the message, they are gone
for good. Be careful to handle errors in the methods higher on the call stack that use this method.

Parameters num_to_pop (int) – Pop up to this many jobs from the queue at once. This can be
up to 10, as per SimpleDB limitations.

Return type list

Returns A list of EncodingJob objects.

classmethod pop_state_changes_from_queue(num_to_pop)
Pops any recent state changes from the queue.

Warning: Once jobs are popped from a queue and delete() is ran on the message, they are gone
for good. Be careful to handle errors in the methods higher on the call stack that use this method.

Parameters num_to_pop (int) – Pop up to this many jobs from the queue at once. This can be
up to 10, as per SimpleDB limitations.

Return type list

Returns A list of EncodingJob objects.

4.2. media-nommer module reference 23

http://aws.amazon.com/simpledb/
http://aws.amazon.com/sqs/
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://aws.amazon.com/simpledb/
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://aws.amazon.com/simpledb/
http://docs.python.org/library/functions.html#int
http://aws.amazon.com/simpledb/

media-nommer Documentation, Release 1.0dev

classmethod wipe_all_job_data()
Deletes the SimpleDB domain and empties the SQS queue. These are both used to store and communicate
job state data.

Return type bool

Returns True if successful. False if not.

4.2.3 media_nommer.ec2nommerd

The feederd module contains Twisted daemon that monitors queues, creates EC2 instances, schedules encoding jobs,
handles response pings from external encoding services, and notifies your external applications when encoding has
completed.

Note: Only more general management logic should live in this module. Anything specific like encoding commands
or EC2 management should live elsewhere. feederd is just the orchestrator.

nommers

Nommers are classes that EC2 instances use with ec2nommerd to consume and produce media in the desired format.
These usually involve wrapping external commands, setting job state details as the process continues, and uploading
the results.

base_nommer

Classes in this module serve as a basis for Nommers. This should be thought of as a protocol or a foundation to assist
in maintaining a consistent API between Nommers.

class media_nommer.ec2nommerd.nommers.base_nommer.BaseNommer(job)
This is a base class that can be sub-classed by each Nommer to serve as a foundation. Required methods raise a
NotImplementedError exception by default, unless overridden by child classes.

Variables job (EncodingJob) – The encoding job this nommer is handling.

download_source_file()
Download the source file to a temporary file.

onomnom()
Start nomming. If you’re going to override this, make sure to follow the same basic job state updating flow
if possible.

upload_to_destination(fobj)
Upload the output file to the destination specified by the user.

wrapped_set_job_state(*args, **kwargs)
Wraps set_job_state() to perform extra actions before and/or after job state updates.

Parameters new_state (str) – The job state to set.

ffmpeg

Contains a class used for nomming media on EC2 via FFmpeg. This is used in conjunction with the ec2nommerd
Twisted plugin.

24 Chapter 4. Development docs

http://aws.amazon.com/ec2/
http://docs.python.org/library/functions.html#str
http://www.ffmpeg.org/
http://twistedmatrix.com/trac/

media-nommer Documentation, Release 1.0dev

class media_nommer.ec2nommerd.nommers.ffmpeg.FFmpegNommer(job)
This Nommer is used to encode media with the excellent FFmpeg utility.

Example API request

Below is an example API request. The job_options dict that is passed to the media_nommer.feederd JSON
API is the important part that is specific to this nommer.:

{
’source_path’: ’some_video.mp4’,
’dest_path’: ’some_video_hqual.mp4’,
’notify_url’: ’http://somewhere.com:8000/job_state_pingback’,
’job_options’: {

’nommer’: ’media_nommer.ec2nommerd.nommers.ffmpeg.FFmpegNommer’,
This options key has ffmpeg command line arguments for a 2-pass
encoding. If you’re doing single pass, you’d only have one
dict in this list.
’options’: [

First pass command specification.
{

Just documenting this here so its existence is known.
’infile_options’: [],
Fed to ffmpeg as command line flags. A None key means
that just the flag name is provided with no arg.
’outfile_options’: [

(’threads’, 0),
(’vcodec’, ’libx264’),
(’preset’, ’medium’),
(’profile’, ’baseline’),
(’b’, ’400k’),
(’vf’, ’yadif,scale=640:-1’),
This denotes the first pass in ffmpeg.
(’pass’, ’1’),
(’f’, ’mp4’),
(’an’, None),

],
},
Second pass command specification.
{

’outfile_options’: [
(’threads’, 0),
(’vcodec’, ’libx264’),
(’preset’, ’medium’),
(’profile’, ’baseline’),
(’b’, ’400k’),
(’vf’, ’yadif,scale=640:-1’),
Notice that this is now 2, for the second pass.
(’pass’, ’2’),
(’acodec’, ’libfaac’),
(’ab’, ’128k’),
(’ar’, ’48000’),
(’ac’, ’2’),
(’f’, ’mp4’),

],
},

], # end options list, max of 2 passes.
}, # end job_options

}

To show how this would be put together, here is the command that would be ran for the first pass:

4.2. media-nommer module reference 25

http://www.ffmpeg.org/

media-nommer Documentation, Release 1.0dev

ffmpeg -y -i some_video.mp4 -threads 0 -vcodec libx264 -preset medium -profile baseline -b 400k -vf yadif,scale=640:-1 -pass 1 -f mp4 -an /dev/null

Note that the an key in the outfile_options list of the first pass above has a None value. You’ll need to
do this for flags or options that don’t require a value.

interval_tasks

This module contains tasks that are executed at intervals, and is imported at the time the server is started. The intervals
at which the tasks run are configurable via media_nommer.conf.settings.

All functions prefixed with task_ are task functions that are registered with the Twisted reactor. All functions
prefixed with threaded_ are the interesting bits that actually do things.

media_nommer.ec2nommerd.interval_tasks.register_tasks()
Registers all tasks. Called by the ec2nommerd Twisted plugin.

media_nommer.ec2nommerd.interval_tasks.task_check_for_new_jobs()
Looks at the number of currently active threads and compares it against the
MAX_ENCODING_JOBS_PER_EC2_INSTANCE setting. If we are under the max, fire up another thread for
encoding additional job(s).

The interval at which ec2nommerd checks for new jobs is determined by the
NOMMERD_NEW_JOB_CHECK_INTERVAL setting.

Calls threaded_encode_job() for any jobs to encode.

media_nommer.ec2nommerd.interval_tasks.task_heartbeat()
Checks in with feederd in a non-blocking manner via threaded_heartbeat().

Calls threaded_heartbeat().

media_nommer.ec2nommerd.interval_tasks.threaded_encode_job(job)
Given a job, run it through its encoding workflow in a non-blocking manner.

media_nommer.ec2nommerd.interval_tasks.threaded_heartbeat()
Fires off a threaded task to check in with feederd via SimpleDB. There is a domain that contains all of the
running EC2 instances and their unique IDs, along with some state data.

The interval at which heartbeats occur is determined by the NOMMERD_HEARTBEAT_INTERVAL
<media_nommer.conf.settings.NOMMERD_HEARTBEAT_INTERVAL setting.

node_state

Contains the NodeStateManager class, which is an abstraction layer for storing and communicating the status of
EC2 nodes.

class media_nommer.ec2nommerd.node_state.NodeStateManager
Tracks this node’s state, reports it to feederd, and terminates itself if certain conditions of inactivity are met.

classmethod contemplate_termination(thread_count_mod=0)
Looks at how long it’s been since this worker has done something, and decides whether to self-terminate.

Parameters thread_count_mod (int) – Add this to the amount returned by the call to
get_num_active_threads(). This is useful when calling this method from a non-
encoder thread.

Return type bool

Returns True if this instance terminated itself, False if not.

26 Chapter 4. Development docs

http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://docs.python.org/library/functions.html#int

media-nommer Documentation, Release 1.0dev

classmethod get_instance_id(is_local=False)
Determine this EC2 instance’s unique instance ID. Lazy load this, and avoid further re-queries after the
first one.

Parameters is_local (bool) – When True, don’t try to hit EC2’s meta data server, When False,
just make up a unique ID.

Return type str

Returns The EC2 instance’s ID.

classmethod get_num_active_threads()
Checks the reactor’s threadpool to see how many threads are currently working. This can be used to
determine how busy this node is.

Return type int

Returns The number of active threads.

classmethod i_did_something()
Pat ourselves on the back each time we do something.

Used for determining whether this node’s continued existence is necessary anymore in
contemplate_termination().

classmethod is_ec2_instance()
Determine whether this is an EC2 instance or not.

Return type bool

Returns True if this is an EC2 instance, False if otherwise.

last_dtime_i_did_something = datetime.datetime(2015, 2, 10, 19, 34, 10, 60820)

classmethod send_instance_state_update(state=’ACTIVE’)
Sends a status update to feederd through SimpleDB. Lets the daemon know how many jobs this instance
is crunching right now. Also updates a timestamp field to let feederd know how long it has been since the
instance’s last check-in.

Parameters state (str) – If this EC2 instance is anything but ACTIVE, pass the state here. This
is useful during node termination.

4.2.4 media_nommer.feederd

This module contains the logic for the Twisted daemon that oversees the encoding process, feederd. Only things
that are specific to this daemon should reside within this module. Anything that could conceivably also be useful to
media_nommer.ec2nommerd should probably be in media_nommer.core.

ec2_instance_manager

Contains the EC2InstanceManager class, which helps manage the currently active instances.

class media_nommer.feederd.ec2_instance_manager.EC2InstanceManager
This class managers and creates EC2 instances from the configured encoder AMI. Additional instances are
spawned based on the size of the job queue in relation to the amount of manpower available at any point in time.

classmethod get_instances()
Returns a list of boto Instance objects matching the media-nommer AMI, as per
media_nommer.conf.settings.EC2_AMI_ID. Also filters only running instances.

4.2. media-nommer module reference 27

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str
http://aws.amazon.com/ec2/
http://twistedmatrix.com/trac/
http://aws.amazon.com/ec2/

media-nommer Documentation, Release 1.0dev

Return type list

Returns A list of boto.ec2.instance.Instance objects representing currently active
media-nommer ec2nommerd instances.

classmethod spawn_if_needed()
Spawns additional EC2 instances if needed.

Return type boto.ec2.instance.Reservation or None

Returns If instances are spawned, return a boto Reservation object. If no instances are spawned,
None is returned.

classmethod spawn_instances(num_instances)
Spawns the number of instances specified.

Parameters num_instances (int) – The number of instances to spawn.

Return type boto.ec2.instance.Reservation

Returns A boto Reservation for the started instance(s).

interval_tasks

This module contains tasks that are executed at intervals, and is imported at the time the server is started. Much of
feederd‘s ‘intelligence’ can be found here.

All functions prefixed with task_ are task functions that are registered with the Twisted reactor. All functions
prefixed with threaded_ are the interesting bits that actually do things.

media_nommer.feederd.interval_tasks.register_tasks()
Registers all tasks. Called by the feederd Twisted plugin.

media_nommer.feederd.interval_tasks.task_check_for_job_state_changes()
Checks for job state changes in a non-blocking manner.

Calls threaded_check_for_job_state_changes().

media_nommer.feederd.interval_tasks.task_manage_ec2_instances()
Calls the instance creation logic in a non-blocking manner.

Calls threaded_manage_ec2_instances().

media_nommer.feederd.interval_tasks.task_prune_jobs()
Prune expired or abandoned jobs from the domain specified in the SIMPLEDB_JOB_STATE_DOMAIN setting.
Also prunes feederd‘s job cache.

Calls threaded_prune_jobs().

media_nommer.feederd.interval_tasks.threaded_check_for_job_state_changes()
Checks the SQS queue specified in the SQS_JOB_STATE_CHANGE_QUEUE_NAME setting for announce-
ments of state changes from the EC2 instances running ec2nommerd. This lets feederd know it needs to get
updated job details from the SimpleDB domain defined in the SIMPLEDB_JOB_STATE_DOMAIN setting.

media_nommer.feederd.interval_tasks.threaded_manage_ec2_instances()
Looks at the current number of jobs needing encoding and compares them to the pool of currently running EC2
instances. Spawns more instances as needed.

See source of media_nommer.feederd.ec2_instance_manager.EC2InstanceManager.spawn_if_needed()
for the logic behind this.

28 Chapter 4. Development docs

http://docs.python.org/library/functions.html#int
http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/
http://aws.amazon.com/ec2/
http://aws.amazon.com/simpledb/
http://aws.amazon.com/ec2/

media-nommer Documentation, Release 1.0dev

media_nommer.feederd.interval_tasks.threaded_prune_jobs()
Sometimes failure happens, but a Nommer doesn’t handle said failure gracefully. Instead of state
changing to ERROR, it gets stuck in some un-finished state in the SimpleDB domain defined in
SIMPLEDB_JOB_STATE_DOMAIN setting.

This process finds jobs that haven’t been updated in a very long time (a day or so) that are probably dead. It
marks them with an ABANDONED state, letting us know something went really wrong.

job_cache

Basic job caching module.

class media_nommer.feederd.job_cache.JobCache
Caches currently active media_nommer.core.job_state_backend.EncodingJob
objects. This is presently only un-finished jobs, as defined by
media_nommer.core.job_state_backend.JobStateBackend.FINISHED_STATES.

CACHE = {}

classmethod abandon_stale_jobs()
On rare occasions, nommers crash so hard that no ERROR state change is made, and the job just gets stuck
in a permanent unfinished state (DOWNLOADING, ENCODING, UPLOADING, etc). Rather than hang on to
these indefinitely, abandon them by setting their state to ABANDONED.

The threshold for which jobs are considered abandoned is configurable via the
FEEDERD_ABANDON_INACTIVE_JOBS_THRESH setting.

classmethod get_cached_jobs()
Returns a dict of all cached jobs. The keys are unique IDs, the values are the job objects.

Return type dict

Returns A dictionary with the keys being unique IDs of cached jobs, and the values being
EncodingJob instances.

classmethod get_job(job)
Given a job’s unique id, return the job object from the cache.

Parameters job (EncodingJob) – A job’s unique ID or a job object.

Return type EncodingJob

Returns The cached encoding job.

classmethod get_jobs_with_state(state)
Given a valid job state (refer to media_nommer.core.job_state_backend.JobStateBackend.JOB_STATES),
return all jobs that currently have this state.

Parameters state (str) – The job state to query by.

Return type list of EncodingJob

Returns A list of jobs matching the given state.

classmethod is_job_cached(job)
Given a job object or a unique id, return True if said job is cached, and False if not.

Parameters job (str or EncodingJob) – A job’s unique ID or a job object.

Return type bool

Returns True if the given job exists in the cache, False if otherwise.

4.2. media-nommer module reference 29

http://aws.amazon.com/simpledb/
http://docs.python.org/library/functions.html#str

media-nommer Documentation, Release 1.0dev

classmethod load_recent_jobs_at_startup()
Loads all of the un-finished jobs into the job cache. This is performed when feederd starts.

classmethod refresh_jobs_with_state_changes()
Looks at the state SQS queue specified by the SQS_JOB_STATE_CHANGE_QUEUE_NAME setting and
refreshes any jobs that have changed. This simply reloads the job’s details from SimpleDB.

Return type list of EncodingJob

Returns A list of changed EncodingJob objects.

classmethod remove_job(job)
Removes a job from the cache.

Parameters job (str or EncodingJob) – A job’s unique ID or a job object.

classmethod uncache_finished_jobs()
Clears jobs from the cache after they have been finished.

TODO: We’ll eventually want to clear jobs from the cache that haven’t been accessed by the web API
recently.

classmethod update_job(job)
Updates a job in the cache. Creates the key if it doesn’t already exist.

Parameters job (EncodingJob) – The job to update (or create) a cache entry for.

4.3 Indices and tables

• genindex

• modindex

• search

30 Chapter 4. Development docs

http://aws.amazon.com/simpledb/

Python Module Index

m
media_nommer.conf, 17
media_nommer.conf.settings, 18
media_nommer.conf.utils, 20
media_nommer.core, 20
media_nommer.core.job_state_backend, 22
media_nommer.core.storage_backends, 21
media_nommer.core.storage_backends.s3,

21
media_nommer.ec2nommerd, 24
media_nommer.ec2nommerd.interval_tasks,

26
media_nommer.ec2nommerd.node_state, 26
media_nommer.ec2nommerd.nommers, 24
media_nommer.ec2nommerd.nommers.base_nommer,

24
media_nommer.ec2nommerd.nommers.ffmpeg,

24
media_nommer.feederd, 27
media_nommer.feederd.ec2_instance_manager,

27
media_nommer.feederd.interval_tasks, 28
media_nommer.feederd.job_cache, 29

31

media-nommer Documentation, Release 1.0dev

32 Python Module Index

Index

A
abandon_stale_jobs() (me-

dia_nommer.feederd.job_cache.JobCache
class method), 29

AWS_ACCESS_KEY_ID (in module me-
dia_nommer.conf.settings), 18

AWS_SECRET_ACCESS_KEY (in module me-
dia_nommer.conf.settings), 18

B
BaseNommer (class in me-

dia_nommer.ec2nommerd.nommers.base_nommer),
24

C
CACHE (media_nommer.feederd.job_cache.JobCache

attribute), 29
CONFIG_S3_BUCKET (in module me-

dia_nommer.conf.settings), 18
contemplate_termination() (me-

dia_nommer.ec2nommerd.node_state.NodeStateManager
class method), 26

D
download_file() (media_nommer.core.storage_backends.s3.S3Backend

class method), 21
download_settings() (in module me-

dia_nommer.conf.utils), 20
download_source_file() (me-

dia_nommer.ec2nommerd.nommers.base_nommer.BaseNommer
method), 24

E
EC2_AMI_ID (in module media_nommer.conf.settings),

18
EC2_INSTANCE_TYPE (in module me-

dia_nommer.conf.settings), 18
EC2_KEY_NAME (in module me-

dia_nommer.conf.settings), 18

EC2_SECURITY_GROUPS (in module me-
dia_nommer.conf.settings), 18

EC2InstanceManager (class in me-
dia_nommer.feederd.ec2_instance_manager),
27

EncodingJob (class in me-
dia_nommer.core.job_state_backend), 22

F
FEEDERD_ABANDON_INACTIVE_JOBS_THRESH

(in module media_nommer.conf.settings), 18
FEEDERD_ALLOW_EC2_LAUNCHES (in module me-

dia_nommer.conf.settings), 18
FEEDERD_AUTO_SCALE_INTERVAL (in module me-

dia_nommer.conf.settings), 18
FEEDERD_JOB_STATE_CHANGE_CHECK_INTERVAL

(in module media_nommer.conf.settings), 19
FEEDERD_PRUNE_JOBS_INTERVAL (in module me-

dia_nommer.conf.settings), 19
FFmpegNommer (class in me-

dia_nommer.ec2nommerd.nommers.ffmpeg),
24

FINISHED_STATES (me-
dia_nommer.core.job_state_backend.JobStateBackend
attribute), 23

G
get_backend_for_protocol() (in module me-

dia_nommer.core.storage_backends), 21
get_backend_for_uri() (in module me-

dia_nommer.core.storage_backends), 21
get_cached_jobs() (me-

dia_nommer.feederd.job_cache.JobCache
class method), 29

get_instance_id() (media_nommer.ec2nommerd.node_state.NodeStateManager
class method), 26

get_instances() (media_nommer.feederd.ec2_instance_manager.EC2InstanceManager
class method), 27

get_job() (media_nommer.feederd.job_cache.JobCache
class method), 29

33

media-nommer Documentation, Release 1.0dev

get_job_object_from_id() (me-
dia_nommer.core.job_state_backend.JobStateBackend
class method), 23

get_jobs_with_state() (me-
dia_nommer.feederd.job_cache.JobCache
class method), 29

get_num_active_threads() (me-
dia_nommer.ec2nommerd.node_state.NodeStateManager
class method), 27

get_unfinished_jobs() (me-
dia_nommer.core.job_state_backend.JobStateBackend
class method), 23

I
i_did_something() (me-

dia_nommer.ec2nommerd.node_state.NodeStateManager
class method), 27

is_ec2_instance() (media_nommer.ec2nommerd.node_state.NodeStateManager
class method), 27

is_finished() (media_nommer.core.job_state_backend.EncodingJob
method), 22

is_job_cached() (media_nommer.feederd.job_cache.JobCache
class method), 29

J
JOB_OVERFLOW_THRESH (in module me-

dia_nommer.conf.settings), 19
JOB_STATES (media_nommer.core.job_state_backend.JobStateBackend

attribute), 23
JobCache (class in media_nommer.feederd.job_cache),

29
JobStateBackend (class in me-

dia_nommer.core.job_state_backend), 23

L
last_dtime_i_did_something (me-

dia_nommer.ec2nommerd.node_state.NodeStateManager
attribute), 27

load_recent_jobs_at_startup() (me-
dia_nommer.feederd.job_cache.JobCache
class method), 29

M
MAX_ENCODING_JOBS_PER_EC2_INSTANCE (in

module media_nommer.conf.settings), 19
MAX_NUM_EC2_INSTANCES (in module me-

dia_nommer.conf.settings), 19
media_nommer.conf (module), 17
media_nommer.conf.settings (module), 18
media_nommer.conf.utils (module), 20
media_nommer.core (module), 20
media_nommer.core.job_state_backend (module), 22
media_nommer.core.storage_backends (module), 21
media_nommer.core.storage_backends.s3 (module), 21

media_nommer.ec2nommerd (module), 24
media_nommer.ec2nommerd.interval_tasks (module), 26
media_nommer.ec2nommerd.node_state (module), 26
media_nommer.ec2nommerd.nommers (module), 24
media_nommer.ec2nommerd.nommers.base_nommer

(module), 24
media_nommer.ec2nommerd.nommers.ffmpeg (module),

24
media_nommer.feederd (module), 27
media_nommer.feederd.ec2_instance_manager (module),

27
media_nommer.feederd.interval_tasks (module), 28
media_nommer.feederd.job_cache (module), 29

N
NodeStateManager (class in me-

dia_nommer.ec2nommerd.node_state), 26
NOMMERD_HEARTBEAT_INTERVAL (in module

media_nommer.conf.settings), 19
NOMMERD_MAX_INACTIVITY (in module me-

dia_nommer.conf.settings), 19
NOMMERD_NEW_JOB_CHECK_INTERVAL (in

module media_nommer.conf.settings), 19
NOMMERD_QTFASTSTART_BIN_PATH (in module

media_nommer.conf.settings), 19
NOMMERD_TERMINATE_WHEN_IDLE (in module

media_nommer.conf.settings), 19

O
onomnom() (media_nommer.ec2nommerd.nommers.base_nommer.BaseNommer

method), 24

P
pop_new_jobs_from_queue() (me-

dia_nommer.core.job_state_backend.JobStateBackend
class method), 23

pop_state_changes_from_queue() (me-
dia_nommer.core.job_state_backend.JobStateBackend
class method), 23

R
refresh_jobs_with_state_changes() (me-

dia_nommer.feederd.job_cache.JobCache
class method), 30

register_tasks() (in module me-
dia_nommer.ec2nommerd.interval_tasks),
26

register_tasks() (in module me-
dia_nommer.feederd.interval_tasks), 28

remove_job() (media_nommer.feederd.job_cache.JobCache
class method), 30

34 Index

media-nommer Documentation, Release 1.0dev

S
S3Backend (class in me-

dia_nommer.core.storage_backends.s3),
21

save() (media_nommer.core.job_state_backend.EncodingJob
method), 22

send_instance_state_update() (me-
dia_nommer.ec2nommerd.node_state.NodeStateManager
class method), 27

set_job_state() (media_nommer.core.job_state_backend.EncodingJob
method), 22

SIMPLEDB_EC2_NOMMER_STATE_DOMAIN (in
module media_nommer.conf.settings), 19

SIMPLEDB_JOB_STATE_DOMAIN (in module me-
dia_nommer.conf.settings), 19

spawn_if_needed() (me-
dia_nommer.feederd.ec2_instance_manager.EC2InstanceManager
class method), 28

spawn_instances() (me-
dia_nommer.feederd.ec2_instance_manager.EC2InstanceManager
class method), 28

SQS_JOB_STATE_CHANGE_QUEUE_NAME (in
module media_nommer.conf.settings), 20

SQS_NEW_JOB_QUEUE_NAME (in module me-
dia_nommer.conf.settings), 20

STORAGE_BACKENDS (in module me-
dia_nommer.conf.settings), 20

T
task_check_for_job_state_changes() (in module me-

dia_nommer.feederd.interval_tasks), 28
task_check_for_new_jobs() (in module me-

dia_nommer.ec2nommerd.interval_tasks),
26

task_heartbeat() (in module me-
dia_nommer.ec2nommerd.interval_tasks),
26

task_manage_ec2_instances() (in module me-
dia_nommer.feederd.interval_tasks), 28

task_prune_jobs() (in module me-
dia_nommer.feederd.interval_tasks), 28

threaded_check_for_job_state_changes() (in module me-
dia_nommer.feederd.interval_tasks), 28

threaded_encode_job() (in module me-
dia_nommer.ec2nommerd.interval_tasks),
26

threaded_heartbeat() (in module me-
dia_nommer.ec2nommerd.interval_tasks),
26

threaded_manage_ec2_instances() (in module me-
dia_nommer.feederd.interval_tasks), 28

threaded_prune_jobs() (in module me-
dia_nommer.feederd.interval_tasks), 28

U
uncache_finished_jobs() (me-

dia_nommer.feederd.job_cache.JobCache
class method), 30

update_job() (media_nommer.feederd.job_cache.JobCache
class method), 30

update_settings_from_module() (in module me-
dia_nommer.conf), 17

upload_file() (media_nommer.core.storage_backends.s3.S3Backend
class method), 21

upload_settings() (in module media_nommer.conf.utils),
20

upload_to_destination() (me-
dia_nommer.ec2nommerd.nommers.base_nommer.BaseNommer
method), 24

W
wipe_all_job_data() (me-

dia_nommer.core.job_state_backend.JobStateBackend
class method), 23

wrapped_set_job_state() (me-
dia_nommer.ec2nommerd.nommers.base_nommer.BaseNommer
method), 24

Index 35

	This may be useful if...
	Learning more
	Documentation
	An Introduction to media-nommer
	Installation
	feederd
	ec2nommerd
	Using feederd's JSON API

	Development docs
	Hacking on media-nommer
	media-nommer module reference
	Indices and tables

	Python Module Index

